Friday, January 22 |
Algebra Seminar
Time: 14:30
Speaker: June Huh (Princeton) Title: "Hard Lefschetz theorem and Hodge-Riemann relations for combinatorial geometries" Room: Kresge K106 Abstract: A conjecture of Read predicts that the coefficients of the chromatic polynomial of a graph form a log-concave sequence for any graph. A related conjecture of Welsh predicts that the number of linearly independent subsets of varying sizes form a log-concave sequence for any configuration of vectors in a vector space. In this talk, I will argue that two main results of Hodge theory, the Hard Lefschetz theorem and the Hodge-Riemann relations, continue to hold in a realm that goes beyond that of Kahler geometry. This implies the above mentioned conjectures and their generalization to arbitrary matroids. Joint work with Karim Adiprasito and Eric Katz. |
Department of Mathematics
the University of Western Ontario
Copyright © 2004-2017
For technical inquiries email