Friday, November 05 |
Algebra Seminar
Time: 14:30
Speaker: Khanh Nguyen Duc (Otto-von-Guericke-University Magdeburg) Title: "The relations between Littlewood-Richardson coefficients and its shifted version" Room: ZOOM (968 6609 0477) Abstract: We give a new interpretation of the shifted Littlewood-Richardson coefficients $f_{\lambda\mu}^\nu$ ($\lambda,\mu,\nu$ are strict partitions). The coefficients $g_{\lambda\mu}$ which appear in the decomposition of Schur $Q$-function $Q_\lambda$ into the sum of Schur functions $Q_\lambda = 2^{l(\lambda)}\sum\limits_{\mu}g_{\lambda\mu}s_\mu$ can be considered as a special case of $f_{\lambda\mu}^\nu$ (here $\lambda$ is a strict partition of length $l(\lambda)$). We also give another description for $g_{\lambda\mu}$ as the cardinal of a subset of a set that counts Littlewood-Richardson coefficients $c_{\mu^t\mu}^{\tilde{\lambda}}$. This new point of view allows us to establish connections between $g_{\lambda\mu}$ and $c_{\mu^t \mu}^{\tilde{\lambda}}$. More precisely, we prove that $g_{\lambda\mu}=g_{\lambda\mu^t}$, and $g_{\lambda\mu} \leq c_{\mu^t\mu}^{\tilde{\lambda}}$. We conjecture that $g_{\lambda\mu}^2 \leq c^{\tilde{\lambda}}_{\mu^t\mu}$ and formulate some conjectures on our combinatorial models which would imply this inequality if it is valid. We present an approach using Fomin diagrams and Viennot's geometric construction for RSK correspondence to attack the conjecture. |
Department of Mathematics
the University of Western Ontario
Copyright © 2004-2017
For technical inquiries email