Noncommutative Geometry
Speaker: Asghar Ghorbanpour (Western)
"Morse inequalities through spectral geometry I"
Time: 14:30
Room: MC 108
Study of the topological and geometric properties of a (Riemannian) manifold by investigating the spectral properties of the geometric elliptic operators, or in general elliptic complexes, is the approach of the spectral geometry. Witten, in his famous paper "Supersymmetry and Morse theory", used the spectral properties of the perturbed de Rham complex, so called Witten complex, to prove the Morse inequalities. In this talk we shall cover his proof. The idea of the proof is to use the approximations of the eigenvalues of the corresponding laplacian. In the next step, we will have an overview on Bismut's proof. Bismut puts Witten's idea in another format. He proves the inequalities by studying the long term behavior of the heat kernel.